Контакты
Подписка
МЕНЮ
Контакты
Подписка

Проблемы подключения тепловых извещателей с индикаторами

В рубрику "Средства обеспечения пожарной безопасности" | К списку рубрик  |  К списку авторов  |  К списку публикаций


Проблемы подключения тепловых извещателей с индикаторами

Обеспечение работоспособности ППКП в двухпороговом режиме с формированием сигналов "Пожар 1", "Пожар 2" по одному и двум извещателям в настоящее время активно обсуждается в отраслевой печати и на специализированных форумах. Проблемы согласования изначально определены отсутствием в документации информации о параметрах режимов шлейфов сигнализации ППКП. По п. 7.2.1.5 ГОСТ Р 53325 – 2009 "Техника пожарная. Технические средства. Пожарной автоматики. Общие технические требования. Методы испытаний" в технической документации на приемно-контрольные приборы должны быть указаны "диапазоны тока в неадресном шлейфе сигнализации, в том числе максимальный ток питания извещателей, при котором ППКП регистрирует все предусмотренные виды извещений и диапазон питающих напряжений"
И.Г. Неплохов
Технический директор бизнес-группы "Центр-СБ", к.т.н.

Проблемы согласования ИП с ППКП

В настоящее время производители ППКП указывают пороги шлейфа в виде его сопротивления, которые могут использоваться на практике только при подключении пассивных контактных пожарных извещателей с дополнительными резисторами. При использовании активных пожарных извещателей данная информация мало что дает, так как ввиду нелинейной вольт-амперной характеристики их внутреннее сопротивление в разы изменяется при различных напряжениях шлейфа. В свою очередь, напряжение шлейфа зависит от его нагрузки, то есть от сопротивления извещателей в режиме "Пожар". Таким образом, определение номиналов дополнительных резисторов проводится экспериментальным путем по двум образцам извещателей и одному образцу ППКП без учета разброса их параметров от образца к образцу и тем более в процессе эксплуатации.

Как под копирку в технических характеристиках на ДИПы указывается, что "выходной сигнал срабатывания извещателя формируется уменьшением внутреннего сопротивления до величины не более 500 Ом при величине тока через извеща-тель 20 мА". Слова "не более" означают, что типовое значение сопротивления может значительно отличаться от 500 Ом, а с учетом того, что достаточно много приборов имеет ток короткого замыкания порядка 20 мА, теряют смысл окончательно. Эта характеристика в паспортах ДИПов сохранилась с времен одно-пороговых знакопеременных шлейфов с допустимым током питания извещате-лей в дежурном режиме 8–10 мА, и в режиме "Пожар" при активизации пожарного извещателя лишь требовалось увеличить ток на значительную величину [1]. Чтобы при активизации нескольких дымовых извещате-лей не возникал режим, близкий к короткому замыканию шлейфа, в извещателях с тех пор используются стабилитроны, которые не допускают снижения напряжения шлейфа менее напряжения стабилизации независимо от числа активированных извещателей в шлейфе.

Для работы шлейфа в двухпороговом режиме требуется обеспечить стабильные характеристики ППКП и извещателя, которые в настоящее время никто не гарантирует. Обычно используемые дополнительные резисторы и оконечный резистор с 5%-ными допусками могут не обеспечить достоверное формирование сигналов "Пожар 1" при активизации одного извещателя и "Пожар 2" при активизации двух извещателей [2]. Параметры шлейфа в режимах "Пожар 1" и "Пожар 2" могут пересекаться. А в так называемом комбинированном шлейфе, рассчитанном на одновременное подключение нормально замкнутых тепловых и дымовых извещателей, то есть фактически уже в четырех-пороговом шлейфе, при обрыве шлейфа за счет тока потребления дымовых извещателей формируются сигналы "Пожар 1" и "Пожар 2", как при сработке тепловых извещателей [2]. Более достоверное распознавание сработки одного и двух извещателей в шлейфе обеспечивается при использовании ППКП с адаптивными порогами "Пожар 1", "Пожар 2", величина которых программируется в соответствии с током потребления пожарных извещателей в дежурном режиме [3]. Очевидно, значительно большие возможности по проработке вопросов согласования извещателей с пожарными приборами имеют компании, выпускающие как извещатели, так и ППКП.

Требование индикации режима "Пожар"

Требования по согласованию ППКП с неадресными пожарными извещателями изложены в общем виде: в п. 4.2.1.1 ГОСТ Р 53325-2009 указано, что "извещатели пожарные, взаимодействующие с прибором приемно-контрольным пожарным, должны обеспечивать информационную и электрическую совместимость с ним", а в п. 4.2.1.3 содержится требование: "Электрические характеристики извещателей пожарных (напряжение и токи дежурного режима и режима тревожного извещения) должны быть установлены в технической документации (ТД) на извещатели пожарные конкретных типов и должны соответствовать электрическим характеристикам шлейфа пожарной сигнализации пожарного приемно-контрольного прибора, с которым предполагается использовать извещатели пожарные". Рассмотреть проблемы совместимости всего многообразия пожарных извещателей в рамках одной статьи не представляется возможным, вследствие чего ограничимся тепловыми контактными пожарными извещателями.

В документации любого ППКП приведены схемы подключения тепловых извеща-телей с нормально замкнутыми и нормально разомкнутыми контактами и номиналы соответственно балластных и дополнительных резисторов для работы в двухпороговом (четырехпороговом) режиме. При отсутствии дымовых извеща-телей в том же шлейфе никаких проблем возникать вроде бы не должно. Однако многие производители ППКП как бы не в курсе, что еще с 01.01.2001 г. на тепловые ПИ, не потребляющие электрический ток, распространяется требование п. 17.6.1 НПБ 76-98 "Извещатели пожарные. Общие технические требования. Методы испытаний" о том, что "ПИ должны содержать встроенный оптический индикатор красного цвета, включающийся в режиме передачи тревожного извещения. При невозможности установки оптического индикатора в ПИ последний должен обеспечивать возможность подключения выносного оптического индикатора или иметь другие средства для местной индикации режима передачи тревожного извещения". П. 4.2.5.1 действующего в настоящее время ГОСТ Р 53325-2009 гласит: "Извещатели пожарные должны содержать встроенный оптический индикатор, мигающий в дежурном режиме и включающийся в режиме постоянного свечения при передаче тревожного извещения. При невозможности установки оптического индикатора в извещатель пожарный последний должен обеспечивать возможность подключения выносного оптического индикатора или иметь другие средства для местной индикации дежурного режима и режима передачи тревожного извещения" с примечанием: "Требование к наличию оптического индикатора у ИПТ класса выше В и у извещателей, предназначенных для работы во взрывоопасных зонах, является рекомендуемым. Требование по миганию индикатора в дежурном режиме для неадресных извещателей является рекомендуемым. Требование по миганию индикатора в дежурном режиме для адресных извещателей, распространяется на извещатели, производимые после 01.01.2010 г.".

Соответственно в настоящее время выпускаются тепловые извещатели со встроенным светодиодным индикатором (рис. 1) и извещатели без индикатора, к которым подключаются выносные индикаторы. Следовательно, при определении номиналов дополнительных резисторов необходимо учитывать наличие и электрические характеристики подключаемых светодиодов.

Характеристики светодиодов

Светодиод, как и любой другой диод, имеет нелинейную вольт-амперную характеристику, то есть в отличие от резистора его сопротивление изменяется в широких пределах в зависимости от тока. В качестве примера на рис. 2 приведена вольт-амперная характеристика индикаторного светодиода от пожарного изве-щателя. При изменении тока светодиода в пределах от 1 до 20 мА напряжение на нем примерно равно 2 В, а точнее при 1 мА напряжение равно 1,84 В, а при 20 мА -2,23 В. Соответственно сопротивление светодиода при токе 1 мА равно 1,84 кОм, а при увеличении тока до 20 мА его сопротивление падает до 111,5 Ом! Поэтому в спецификации на светодиоды, как правило, указывается типовое и максимальное падение напряжения на светодиоде. Эти величины показывают возможный разброс параметров светодиодов: например, может быть указано типовое падение напряжения на светодиоде, равное 2,2 В при 20 мА, а максимальное - 2,6 В. Яркость светодиодов также обычно указывается при токе 20 мА и в зависимости от типа светодиода может быть по минимуму 5-10 mcd и достигать порядка 2000-3000 mcd, что существенно влияет на их цену.


В пожарном шлейфе ток индикаторов порядка 20 мА обеспечить не представляется возможным, поскольку даже ток короткого замыкания шлейфа у многих приборов не достигает этой величины. Конечно, для обеспечения функции индикации светодиод при включении должен иметь достаточную яркость и широкую диаграмму направленности. По экспертной оценке, стандартные свето-диоды обеспечивают более-менее приемлемую яркость при токах не менее 5 мА, а сверхъяркие свето-диоды – при токах от 1,5 мА. Необходимо отметить, что для упрощения монтажа в тепловых извещателях желательно использовать неполярные светодиодные индикаторы.

Схема подключения тепловых извещателей

Тепловые извещатели с нормально замкнутыми контактами подключаются к шлейфу пожарной сигнализации аналогично дымовым извещателям, и различие заключается в основном в значительно меньшей величине падения напряжения в активном режиме и в отсутствии тока потребления в дежурном режиме. Соответственно присутствуют примерно те же проблемы при согласовании шлейфа в двухпороговом режиме, степень значимости которых в основном зависит от типа используемого прибора. В этой статье ограничимся рассмотрением проблем, возникающих при использовании тепловых извещателей с нормально замкнутыми контактами, которые соответственно подключаются в шлейф последовательно.

Принцип действия так называемого теплового шлейфа заключается в повышении сопротивления шлейфа на величину балластного сопротивления, подключенного параллельно извещателю при его активизации (рис. 3). Без учета сопротивления кабеля, сопротивления контактов извещателей и тока утечки сопротивление шлейфа в дежурном режиме равно Rок, при активизации одного извещателя: RШС = Rбал + RОК, при активизации двух извещателей: RШС = 2Rбал + RОК, трех извещателей: RШС = 3Rбал + RОК и так далее.


И если рассматривать "тепловой" шлейф с извещателями без индикаторов, то существенных проблем возникать не должно. В документации на любой прибор указаны величины оконечных и балластных резисторов. Кроме того, обычно приводятся диапазоны сопротивления шлейфа в различных режимах. Например, если величина балластных резисторов по 4,7 кОм, а оконечного резистора - 7,5 кОм, то при сработке первого извещателя сопротивление шлейфа повышается до 12,2 кОм, а при сработке двух извещателей - до 16,9 кОм, и при сопротивлении шлейфа более 20 кОм можно было бы фиксировать обрыв шлейфа и формировать сигнал "Неисправность". Однако необходимо учитывать, что при работе прибора в двухпороговом режиме в помещении должно устанавливаться не менее трех пожарных извещателей. Следовательно, есть определенная вероятность одновременного срабатывания 2-го и 3-го извещателя, ее величина зависит от многих факторов, например от расположения извещателей относительно очага и идентичности их характеристик, от временных характеристик прибора, то есть насколько близкие по времени сработки извещателей он идентифицирует. Но в любом случае величина этой вероятности не равна нулю. А вот в приборах с перезапросом состояния извещателей, в том числе зачем-то и тепловых, эта вероятность близка к единице в случае исправности всех трех извещателей. Таким образом, с учетом высокой скорости развития открытого очага, если после сработки первого теплового извещателя прибор производит автоматический сброс шлейфа и повторный опрос состояния шлейфа производится примерно через полминуты, то к этому времени все три извещателя успеют активизироваться. В этом случае сопротивление шлейфа будет равно 21,6 кОм, а при активизации четырех извещателей – уже 26,3 кОм. Следовательно, для исключения формирования сигнала "Неисправность" при пожаре порог данного сигнала должен быть выбран около 30 кОм и режим перезапроса должен быть исключен.

Попутно отметим, что порог обрыва шлейфа на уровне 30 кОм исключает возможность работы с дымовыми извещате-лями. При напряжении шлейфа на холостом ходу порядка 20 В порогу сигнала "Неисправность" соответствует ток шлейфа, равный 0,67 мА, а за вычетом тока утечки 0,4 мА от сопротивления 50 кОм, что необходимо обеспечить в обязательном порядке по требованиям ГОСТ Р 53325–2009, на питание извещателей в дежурном режиме остается менее 0,27 мА. Что ограничивает возможности защиты таким шлейфом до одного помещения с тремя дымовыми извещателями. При попытке защиты даже двух помещений, то есть при включении в шлейф шести дымовых извещателей с током по 0,1 мА, их суммарный ток в дежурном режиме будет равен 0,6 мА, а при обрыве шлейфа между двумя помещениями, либо при снятии извещателей во втором помещении обрыв шлейфа не будет зафиксирован, так как ток оставшихся трех извеща-телей, равный 0,3 мА, превышает порог формирования сигнала "Неисправность". Кроме того, формирование так называемого "комбинированного" шлейфа с одновременным включением дымовых и тепловых извещателей даже с нормально разомкнутыми контактами нельзя допускать, исходя из тактических соображений. Уровень защиты дымовыми и тепловыми извещателями существенно различается, соответственно должна быть другой реакция на сработку теплового извещате-ля при наличии открытого очага по сравнению с обнаружением тлеющих очагов дымовыми извещателями. С другой стороны, нормами определена защита большинства объектов дымовыми извещателями как обеспечивающими раннее обнаружение пожара и защищающими жизнь людей. Тепловые извещатели используются в настоящее время достаточно редко и, как правило, в зонах, где не допускается использование дымовых извещателей по условиям эксплуатации. Вполне целесообразна защита этих зон отдельными шлейфами для обеспечения адресности с учетом обнаружения пожара на этапе открытого очага.

Расчет шлейфа с тепловыми извещателями с индикатором

Расчет шлейфа при использовании тепловых извещателей с индикаторами, по требованиям действующих уже 10 лет норм, естественно, усложняется. Кроме того, если в документации на приемно-контрольный прибор приведены схемы включения тепловых извещателей, аналогичные представленной на рис. 3, то возникают вопросы: какая величина балластных резисторов должна быть выбрана при наличии светодиодов, можно ли уложиться в установленные пороги сигналов "Пожар 1", "Пожар 2" с учетом нелинейности характеристик светодиодов, будут ли они что-либо индицировать и т.д. Конечно, для точного расчета требуются более полные характеристики ППКП, которые в документации не указываются, исходя из чего попытаемся определить общие закономерности для различного класса приборов.

Из предыдущего расчета при напряжении ненагруженного шлейфа 20 В при выходном сопротивлении шлейфа прибора 1 кОм и при сопротивлении шлейфа в режиме "Пожар 1" 4,7 к + 7,5 к, ток равен примерно 1,515 мА. Определим величину балластного сопротивления в предположении падения напряжения на светодио-де, равного 2 В (рис. 2). При токе шлейфа 1,515 мА на резисторе 4,7 кОм падает до 1,515х4,7 = 7,12 В. За вычетом 2 В, которые падают на светодиоде на балластное сопротивление, остается 5,12 В и с учетом тока шлейфа 1,515 мА его величина должна быть 3,38 кОм. Не будем производить округление этого значения до ближайшего номинала резистора, чтобы оценить, насколько расходятся параметры шлейфа при сработке второго и третьего теплового извещателя с индикатором от безындикаторных. Проверка: сопротивление светодиода при падении напряжения на нем 2 В и токе 1,515 мА равно 2/1,515 = 1,32 кОм, что в сумме с вычисленным балластным сопротивлением составляет требуемые 4,7 кОм.


При активизации второго извещателя ток шлейфа будет определяться как частное от деления суммарного падения напряжения на резисторах на их суммарную величину. То есть из исходного напряжения шлейфа, равного 20 В, вычитаем величину падения напряжения на двух све-тодиодах - примерно 4 В. Получаем 16 В -падение на резисторах, их суммарная величина 1 к + 3,38 к + 3,38 к + 7,5 к = 15,26 к, а ток соответственно равен 1,05 мА. Общее сопротивление цепи равно 20В/1,05мА = 19,05 кОм, и, вычитая выходное сопротивление прибора 1 кОм, получаем сопротивление шлейфа, равное 18,05 кОм. Получили несколько большую величину по сравнению с 16,9 кОм при использовании тепловых извещателей без индикаторов. Аналогично можно посчитать параметры шлейфа при активизации трех извещателей, однако следует отметить, что снижение величины тока до 1 мА делает проблематичным контроль индикации уже двух извещателей даже при использовании сверхъярких светодиодов, к тому же при токах менее 1-1,5 мА вольт-амперная характеристика "загибается" и необходимо учитывать изменение падения напряжения на светодиоде (рис. 2). Проще сказать, что приборы с однополяр-ным шлейфом не рассчитаны на подключение тепловых извещателей с индикаторами, поэтому их подключение и не приводится в документации. Однако имеются и более существенные нюансы, чем отсутствие индикации режима "Пожар" при использовании выносного индикатора!

Выносной индикатор или резервирование неисправности?

По действующим с 2003 г. нормативным требованиям для снижения вероятности формирования ложного сигнала "Пожар" запуск большей части противопожарных систем производится при срабатывании не менее двух извещателей при наличии третьего резервного извещателя в двухпороговом шлейфе. Реализуется логика работы "два из трех", то есть сигнал "Пожар 2" формируется при активизации любых двух извещателей, а третий извеща-тель может быть неисправным. Этот алгоритм не обеспечивается при включении в "тепловой" шлейф извещателей с нормально замкнутыми контактами и с выносным индикатором. В случае обрыва цепи выносного индикатора или балластного резистора при срабатывании теплового извещателя происходит обрыв шлейфа (рис. 5) и прибор формирует сигнал "Неисправность", естественно при срабатывании оставшихся исправных из-вещателей обрыв шлейфа не устраняется и пожар не обнаруживается. Причем в дежурном режиме, при замкнутых контактах извещателя, эта неисправность не обнаруживается.


Кроме того, даже если первым сработает исправный извещатель, а вторым – из-вещатель с оборванной цепью выносного индикатора, то прибор сформирует сначала сигнал "Пожар 1", а при сработке второго извещателя обнаружит обрыв шлейфа и сформирует сигнал "Неисправность" по логике работы большой части отечественных приборов. Таким образом, грубейшим образом нарушается логика работы системы, определенная в нормативах, – вместо резервирования неисправных извещателей резервируется сама неисправность. Если из двух сработавших извещателей один имеет обрыв выносного индикатора, сигнал "Пожар" блокируется.

В приборах с функцией перезапроса, когда к моменту перепроверки шлейфа сработают все три извещателя, будет работать логика резервирования неисправности по максимуму, по "ИЛИ": если хотя бы в одном извещателе из трех есть обрыв цепи выносного индикатора, то сигнал "Пожар" блокируется из-за обрыва шлейфа.

Для обеспечения работоспособности системы в зарубежных нормах присутствует общее требование, относящееся ко всем пожарным извещателям, о том, что обрыв или короткое замыкание цепей выносных индикаторов и других дополнительных устройств не должны нарушать работоспособность извещателя.

Таким образом, при использовании тепловых извещателей с нормально замкнутыми контактами необходимо заранее прорабатывать вопросы согласования с ППКП для исключения значительных трудностей на этапе монтажа и приемосдаточных испытаний.

Опубликовано: Каталог "Пожарная безопасность"-2011
Посещений: 19916

  Автор

Неплохов И. Г.

Неплохов И. Г.

Технический директор компании "Центр-СБ", к.т.н.

Всего статей:  89

В рубрику "Средства обеспечения пожарной безопасности" | К списку рубрик  |  К списку авторов  |  К списку публикаций